PUBLICATIONS
1988
GRAZING BEHAVIOR OF YEARLING HORSES. I. TIME SPENT
GRAZING DIFFERENT FORAGES

D. K. Hansen, F. M. Rouquette, Jr., M. J. Florence,
J. Walker, and R. Heitschmidt

SUMMARY

The time budgeting of yearling horses grazing improved pastures
at two different times of the year in East Texas was studied. Three
yearling horses weighing 650 lb each were grazed from March through
September and from December through January. Time spent grazing and
time involved in other behavior was measured using a Kienzle TFW time
recorder device in September and December of 1986. Time spent grazing
averaged 16.3 hr or 67.8 percent of the time (24 hr) in September when
bermudagrass was grazed, and 13.8 hr or 57.2 percent of the day in
December during which time rye-ryegrass was grazed. A circadian
pattern of grazing was seen in both times of the year, with a
depression just before sunrise and after sunset. However, there was
fairly sustained grazing activity during the dark hours. These
results indicated that the Kienzle time recorder device can be used
successfully with horses.

INTRODUCTION

There have been few reports in the literature of grazing behavior
or time budgets (Arnold, 1984) for behavior in horses. Most reports
have described behavior of feral horses (Feist, 1971) or horses
grazing large areas (Tyler, 1972; Arnold, 1984), but there have been
very few describing the behavior of horses grazing small pastures.
Therefore, the grazing behavior or time budgeting of yearling horses
grazing improved pastures at two different seasons in East Texas was
studied.

PROCEDURES

Three yearling horses averaging 650 lb were grazed on
bermudagrass pastures which were sod-seeded with rye-ryegrass from
March through September of 1986. Animals were removed from pastures
in October and placed back on similar pastures in December for grazing

136
of cool-season annual forage. Animals were stocked at slightly less than 3 AU/ac throughout the experiment.

Time spent grazing and time spent in other behavior was measured using a Kienzle TFW time recorder device. The device transfers the motion of the horse's head onto a recording chart by means of a pendulum motion and a stylus. The clock-like device is enclosed in a weather-proof bag attached around the animal's neck at the throat latch area and secured to a halter. When the horse lowered the head to graze, the movement of the head produced markings on the recording chart. The time recorders were placed on the horses for 3-4 days prior to the actual measurement to allow the horses to become accustomed to the device. Records were made for seven consecutive days during September when horses were grazing bermudagrass and December when rye-ryegrass was grazed. The chart records were validated by observation of horses several times daily.

RESULTS

Time spent grazing was easily measured since distinctive marks were made when the horse's head was lowered. However, the distinction between other types of behavior (resting, walking, running, etc.) was not measurable with this device. All other behavior was grouped under time spent not grazing.

Examining Table 1, it can be seen that during September, yearlings grazed 68% of the day, or 16.3 hrs per day. This is similar to the value of 16.9 hr found in mature thoroughbred horses grazing paddocks in August (Francis-Smith, 1977). In a study conducted in Australia, the time spent grazing ranged from 4 to 16 hr per day over a period of 2 years in mature horses (Arnold, 1984). Time spent not grazing, which included all other activities, constituted 32.2% of the day. During September, forage availability was approximately 4900 lb DM/ac. The time spent grazing by yearlings during December was 57.2% or 13.8 hr per day. Time spent in other activities was 42.8%. Forage availability during this time was approximately 2200 lb DM/ac. Grazing time was 2.5 hr less in December than during September, which

---

1 Kienzle Apparate Villingen/Schwarzwald
could be due to the season or forage type since bermudagrass was
grazed in September and ryegrass was utilized in December. The
most obvious difference between these types of forages was the greater
moisture content of the ryegrass, which may have caused more fill
and sense of satiety to the horses with less forage; thereby, reducing
grazing time.

A graphic representation of percent time spent grazing per hour
in September and December is shown in Figures 1 and 2, respectively.
Even though total time spent grazing was different between times of
the year, a similar circadian trend was evident from both forage
types. Percent time grazing was depressed just before sunrise on both
forages (approx. 4-6 a.m.). Grazing was maintained at a fairly high
level during the daylight hours, then was depressed again at
approximately sunset (6-8 p.m.), and resumed thereafter. This was
similar to a circadian pattern seen in horses grazing in Australia
where grazing was most depressed between 2 and 6 a.m. (Arnold, 1984).

Results of these experiments indicated that the Kienzle time
recorder device can be used successfully with horses. The adjustment
period to the device should be at least 3-4 days before representative
charts can be produced. The times spent grazing per day found in
these experiments were similar to the few reports in the literature
using mature horses in large paddocks. The time spent grazing per day
of yearling horses on small, improved pastures ranged from 13.8 to
16.3 hours, and horses tended to graze throughout the night as well as
during the daylight hours. With the increasing economic advantage of
improved pastures for horses, more research needs to be conducted in
the area of equine grazing behavior in these situations.

LITERATURE CITED

Arnold, G. W. 1984. Comparison of the time budgets and circadian
patterns of maintenance activities in sheep, cattle and horses

Feist, J. D. 1971. Behavior of feral horses in the Pryor mountain
wild horse range. M.S. Thesis. Univ. of Michigan, Ann Arbor.

Francis-Smith, K. 1977. Behaviour patterns of horses grazing in

Tyler, S. L. 1972. The behavior and social organization of the New
<table>
<thead>
<tr>
<th>Animal</th>
<th>Date</th>
<th>Pasture</th>
<th>Hrs Grazing</th>
<th>Time Spent Grazing (%)</th>
<th>Time Not Grazing (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9-16</td>
<td>bermudagrass</td>
<td>17.9</td>
<td>74.4</td>
<td>25.6</td>
</tr>
<tr>
<td>13</td>
<td>9-16</td>
<td>bermudagrass</td>
<td>14.9</td>
<td>61.9</td>
<td>38.1</td>
</tr>
<tr>
<td>16</td>
<td>9-16</td>
<td>bermudagrass</td>
<td>16.1</td>
<td>67.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>16.3</td>
<td>67.8</td>
<td>32.2</td>
</tr>
<tr>
<td>7</td>
<td>12-3</td>
<td>rye-ryegrass</td>
<td>13.1</td>
<td>54.4</td>
<td>45.6</td>
</tr>
<tr>
<td>8</td>
<td>12-3</td>
<td>rye-ryegrass</td>
<td>14.2</td>
<td>59.2</td>
<td>40.8</td>
</tr>
<tr>
<td>17</td>
<td>12-3</td>
<td>rye-ryegrass</td>
<td>13.9</td>
<td>58.1</td>
<td>41.9</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>13.8</td>
<td>57.2</td>
<td>42.8</td>
</tr>
</tbody>
</table>
FIG. 1. PERCENT TIME SPENT GRAZING PER HOUR OF YEARLING HORSES IN SEPTEMBER ON BERMUDA GRASS PASTURES

FIG. 2. PERCENT TIME SPENT GRAZING PER HOUR OF YEARLING HORSES IN DECEMBER ON RYE-RYEGRASS PASTURES