PUBLICATIONS 2006

ECONOMIC ASSESSMENT OF STOCKERS GRAZING RYE-RYEGRASS PASTURES AT THREE STOCKING RATES AND THREE LEVELS OF SUPPLEMENT

F.M. Rouquette, Jr. and Leonardo Ortega

Background. Winter pasture costs for stockers have increased in direct proportion to energy-related costs associated with fertilizer and fuel. On non-irrigated small grain plus ryegrass pastures planted on low-to-medium fertility soils, pasture costs may range from $\$ 100$ to $\$ 225 / \mathrm{ac}$ depending upon fertilizer N input. As price of cattle increase, it generally becomes more profitable to increase stocking rate to enhance gain per unit land area. With moderate to highpriced cattle, and low to moderate feed costs, use of supplementation to substitute for high-value forage offers management options to increase stocking rates. Objectives of this evaluation were to assess costs and returns per animal and per acre from rye + ryegrass pastures grazed at three stocking rates with stockers receiving three levels of a corn-based supplement. Performance traits were reported in a companion 2006 Field Day Report (Rouquette et al).

Research Findings. Performance, costs, and returns from the stocking rate (SR) x supplementation (SUP) experiment showed the advantages and disadvantages of treatments (Table 1). Using input-sales information for this 2004-2005 period, costs per pound of gain ranged from $\$ 0.31$ to $\$ 0.38 / \mathrm{lb}$ on both low ($1.5 \mathrm{hd} / \mathrm{ac}$) and medium ($2.1 \mathrm{hd} / \mathrm{ac}$) SR regardless of SUP level. On the high SR ($3.0 \mathrm{hd} / \mathrm{ac}$), costs per pound of gain were similar at $\$ 0.45$ and $\$ 0.48 / \mathrm{lb}$, respectively, from $.4 \%$ and $.8 \%$ BW daily SUP. On the non-SUP, high SR pasture, cost/lb gain was highest at $\$ 0.63 / \mathrm{lb}$. When ADG was only $1.12 \mathrm{lbs} / \mathrm{da}$, returns per acre ranged from a loss of $\$ 53 /$ ac on high SR, non-SUP pastures, to $\$ 252 /$ ac on medium SR plus $.8 \%$ BW SUP (Table 1). Although a SR of $1.5 \mathrm{hd} / \mathrm{ac}$ was a relatively low-risk pasture management option, return/ac was more than doubled to $\$ 196 / a c$ by using $.4 \%$ BW SUP. Additional increases in returns of this magnitude were obtained only by increasing SR to $2.1 \mathrm{hd} / \mathrm{ac}$ and using SUP of $.4 \%$ BW (\$219/ac) or .8\% BW (\$252/ac).

Application. Differential returns per acre among SR and SUP levels allow for economic assessments among treatments (Table 2). For example, on the low SR, non-SUP pasture, an extra $\$ 75 / \mathrm{ac}$ was realized by increasing SR from 1.5 to $2.1 \mathrm{hd} / \mathrm{ac}$. However, a loss of $\$ 132 / \mathrm{ac}$ resulted by doubling SR from 1.5 to $3.0 \mathrm{hd} / \mathrm{ac}$ on non-SUP pastures. Compared to non-SUP and SR of 3.0 hd/ac, all other treatments resulted in additional income that ranged from \$139/ac to \$305/ac. Economic returns were increased and often optimized at moderate SR, however, these SR are both site-specific and management-controlled. Increasing SUP to levels that dramatically substitute for forage intake can be economically rewarding with low to modest-priced supplement
and moderate to high-priced cattle. Supplement effectiveness and economic returns are dependent upon purchase-selling prices of cattle, supplement costs, supplement:extra gain ratios, delivery method, weight, and body condition of cattle at termination of grazing.

Table 1. Performance, costs, and returns from stockers grazing rye-ryegrass at three stocking rates and three levels of supplemental corn ration. (SUP)

SR (hd/ac)	1.5	2.1	3.0	1.5	2.1	3.1	1.5	2.2	3.0
SUP (\% BW)	0	0	0	0.4	0.4	0.4	0.8	0.8	0.8
Days on Pasture	148	148	148	148	148	148	148	148	148
Avg. Daily Gain (lbs/d)	2.80	2.21	1.12	3.13	2.85	1.93	3.24	3.11	2.10
Total Wt. Gain (lbs)	6635	5595	2663	6945	6760	4576	7235	5523	5253
Avg. Initial Wt. (lbs)	577	565	574	566	587	589	584	582	579
Avg. Daily SUP (lb/hd)	0.00	0.00	0.00	2.82	2.80	2.70	5.90	5.94	5.40
Avg. Daily Hay (lb/hd)	1.71	3.87	4.81	1.71	2.76	4.39	1.82	2.85	3.72
Total Revenue (\$)	14018	14849	12471	14510	15143	15143	15069	11764	14939
Revenue per Hd (\$)	876	873	779	967	946	866	1005	980	879
Revenue per Ac (\$)	1314	1834	2384	1451	1988	2685	1507	2157	2636
Value of Gain (\$/lb)	0.44	0.58	0.52	0.62	0.57	0.55	0.61	0.60	0.59
Oper. Expen. ${ }^{1}$ (\$)	13169	13593	12747	12548	13472	13411	13366	10388	14355
Cost per Hd (\$)	823	800	797	837	842	838	891	866	844
Cost per Ac (\$)	1235	1679	2437	1255	1768	2598	1337	1904	2533
Cost/lb Gain (\$/lb)	0.31	0.36	0.63	0.33	0.33	0.45	0.38	0.35	0.48
Net Revenue	849	1255	-276	1962	1671	446	1703	1376	584
Return to Oper. (\%)	6.45	9.23	-2.17	15.64	12.41	3.33	12.74	13.25	4.07
Return per Hd (\$)	53	74	-17	131	104	28	114	115	34
Return per Ac (\$)	80	155	-53	196	219	86	170	252	103
Break-even Wt. (lb/hd)	868	818	757	889	895	846	947	920	852
Break-even Price (\$/lb)	0.83	0.89	1.08	0.81	0.84	0.96	0.84	0.83	0.95

${ }^{1}$ Operating expenses include all pasture, supplement, hay, and animal costs.
Table 2. Differential returns per acre among stocking rate (SR) x supplement treatments (SUP).

$\underset{(S U P-S R)}{\text { TRT }}$	0-1.5	0-2.1	0-3.0	.4-1.5	.4-2.1	.4-3.1	.8-1.5	.8-2.2	.8-3.0
	---1/4c								
0-1.5	0.00								
0-2.1	75^{1}	0.00							
0-3.0	-132	-208	0.00						
.4-1.5	117	41	249	0.00					
.4-2.1	140	64	272	23	0.00				
.4-3.1	7	-69	139	-110	-133	0.00			
.8-1.5	91	15	223	-26	-49	84	0.00		
.8-2.2	173	97	305^{2}	56	33	166	82	0.00	
.8-3.0	23	-52	156	-93	-116	17	-67	-149	0.00

[^0]
[^0]: If 0-2.1 is compared with $0-1.5$. an additional $\$ 75 / \mathrm{ac}$ was obtained due to stocking rate increase of 1.5 to $2.1 \mathrm{hd} / \mathrm{ac}$.
 "A total of $\$ 305 / \mathrm{ac}$ was obtained by decreasing stocking rate from 3.0 to $2.2 \mathrm{hd} / \mathrm{ac}$ and supplementing with $.8 \% \mathrm{BW}$.

